Heat Shrink Sealer and Tunnel Testing Checklist

To begin, you should unplug the machine and open the interior to view fuses and electrical components. If turning power on for testing, be sure to unplug before any interior work is begun.

Incoming Power

- The incoming power meets machine requirements (use a multimeter)
- The main power to the machine is coming on
- The sealer works, heater works, and tunnel conveyor all work

If all of these items are checked move on to the next section. If incoming power is lower or higher than required, the wrong amperage can cause a machine not to function properly. If the sealer, heater, or tunnel conveyor is not working move to the next section.

Fuses

- Check all fuses for continuity
- Be sure fuse ends are making contact with fuse holder ends

Glass and ceramic fuses can look to be in working order when they are burnt out. The best way to check is with a multimeter to check continuity. Be sure all fuses are seated into the fuse holder.

Internal Wiring

- Inspect all internal wiring for burns or signs of sparking
- Tighten wires on contactors and relays
- Tighten wires connecting to sealing wires & tunnel blower motors

Loose wires can cause unforeseen problems. If incoming power and fuses have been checked, inspect all wires for shorts and possible loose connections. Be sure any wires coming into contactors, relays, and sealing areas are tight. Be sure to tighten wires with no power entering the machine.
Inspect Relays and Contactors

Are relays and contactors activating during operation

Check continuity from each side of the contactor

Check continuity from each side of the relay

Contactors and relays activate different parts of shrink sealers and tunnels. A contactor will engage when the heater in a shrink tunnel turns on. Relays and contactors also engage when a sealing wire is activated. Be sure all are working properly and engaging when needed.